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I. INTRODUCTION

Reduction of mortality from Ventricular Fibrillation, VF,
Ventricular Tachycardia, VT, and others cardiac causes
depends mainly on rapid detection and accurate
classification of these arrhythmia’s. Conventional
algorithms used in both surface ECG monitors and in
implantable cardiovertor/defibrillators rely on simple heart
rate for detection-classification even though the rate range of
VF overlaps with that of VF. Due to this big efforts are
devoted to looking for a reliable and robust algorithm to
classify these signal in real time [1].

Regarding Time domain analysis, few proposals and
algorithm have been published deal to ECG classification
mainly because of the poor results obtained. However, one
of the advantages of these algorithms is its simple and
computationally efficient implementation providing a faster
classification than the algorithms based on Frequency,
Time-Frequency analysis or on other more exotic transforms
as Wavelet [1].

The Complexity Measure, CM, proposed by Lempel and
Ziv, is one of the most interesting time analysis algorithms
used for classifying ECG [2]. X-S Zhang states in [3] to
have obtained a correct classification using it. In the CM
algorithm described in [3], for a specific window length, the
algorithm generates a 0-1 string comparing the raw
electrocardiogram data to a selected suitable threshold. The
Complexity Measure is obtained from the 0-1 string.

Using the normal sinus rhythm and malignant ventricular
arrhythmias of the MIT-BIH database with the CM
algorithm we got an overall error rate of 22%. The worst
result was with SR signals, where approximately only 33%
of the signals were classified correctly. Yet the result for VT
and VF was satisfactory.

The CM algorithm was implemented with more levels, in
order to keep more information than with two symbols, but
the final result still remained unsatisfactory.

Due to the above results of the CM algorithm we studied
the possibility to split the process up in two steps. In the first
one, using the novel measure Sample Percentage in the
Dynamic Range, SPDR, the rhythm was classified like SR
or VT/VF. In the second one and using the CM algorithm
the signal was classified either as VT or VF.

Next section describes the material and the methods, i.e.,
the Complexity Measure, CM, in combination with the
Samples Percentage in the Dynamic Range, SPDR, used for
classifying ECG. Section III shows the results obtained and
describes the computationally efficient implementation. In
Section IV discussion and open issues are addressed.
Finally, in Section V conclusions and future work are
explained.

II. MATERIAL AND METHODS

$�� (&*�'DWD
A set of ECG records obtained from the MIT-BIH

database is used for testing the proposed methods. In this
particular case, 21 SR records from Normal Sinus Rhythm
subset of the MIT-BIH, and 56 VT and 61 VF signals
obtained from the Malignant Arrhythmia subset of MIT-
BIH, were selected and used for both development and
evaluation stages. For the verification of the SPDR method,
an additional set of 20 SR signals from the arrhythmia
database subset of MIT-BIH were selected.

All the data segments were 10sec length and the sampling
frequency was set to 250Hz. In order to remove baseline
drift and high frequency noise, a band-pass filter with band-
pass 0,5-20 Hz. was applied [3].
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The Complexity Measure, proposed by Lempel and Ziv

[2], was implemented as it is explained in [3]. We evaluate
the complexity of the ECG sequence from the point of view
of a simple learning machine which, as it scans a given n-
digit sequence, S=s1 s2... sn , from left to right, adds a new
word to its memory every time it discovers a sub-string not
previously encountered. The size of the compiled
vocabulary and the rate at which new words are encountered
along S, are the basic ingredients in the proposed evaluation
of the complexity of S.

Studying the Complexity Measure obtained with VT and
VF signals, a threshold was established, &97�9) ����. From
now on, we will measure the complexity of any signal
making a comparison with this threshold so that we will
decide that the signal is VT whether &�(&*�� �� &97�9),
otherwise, the signal is VF.
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Because of the morphological differences between SR

signals and the two other rhythms, we propose a novel
measure named, Sample Percentage in the Dynamic Range,
SPDR. Given a set of ECG segments, we have observed that
measuring the percentage of samples in the range
3HDNB3RVLWLYHB9DOXH�339�� �� ���� 339, we are able to
separate the rhythms into two groups, SR signals and VT-
VF records. Lot of proofs was made with different
percentages but the range 339����339 was chosen
because it shows to have the most appropriate characteristic
and the biggest capability to classify the signals.

Because SPDR is a novel measure, we checked its result
with an additional set of 20 SR ECG records obtained, as we
mentioned in section II.A, from the arrhythmia database.

In the same way as the Complexity Measure algorithm a
threshold value, P635', was defined. The values of this new
parameter obtained for SR signals, ranged from 2% to 30%,
and for VT/VF signals from 33% to 60%. With these results,
we established a threshold, mSPRD=30%, that we will use to
classify a signal either as SR when 63'5�(&*����P635' or
VT/VF in case of 63'5�(&*��!�P635'.

III. CLASSIFICATION ALGORITHM

As it was mentioned in the introduction, we do the
classification of a signal in two different steps, such as
depicts Fig. 1. Firstly, the ECG signal is preprocessed, i.e.,
windowing and filtering. Once the signal is spurious free,
the SPDR algorithm is used in order to classify it either as
SR signals or VT/VF. In case of the signal has been
classified as SR the process is finished. Otherwise, the ECG
will be further analyzed using the CM algorithm in order to
classify it either as VT or VF.

We worked with ECG segments of different length in
order to observe the behavior of the algorithms and choose
the optimal window size. We corroborated that the
performance we got, remains approximately similar for any
windowed longer than 3 sec. The detection results using our
ECG database are shown in Table I.

The classification SPDR-CM algorithm has been
implemented in a computer using Lab-View and C++
software. The tool is capable to acquire signal either from a

patient using a commercial system for acquisition of ECG
signals or from a commercial DataBase. The user has the
possibility to customize the Acquisition front-end panel
setting up the sample frequency, channels, window length,
etc, Fig. 2.

IV. DISCUSSION and OPEN ISSUES

Even though X-S Zhang states in [3] that has achieved a
perfect classification with the CM algorithm, we got a very
poor result testing the algorithm with signals from MIT-BIH
database. The reason may be that in [3] the ECG records are
own-recorded and it’s known that a database derived from
defibrillator implantation studies is usually much more
stable and rhythm specific in comparison to a general ECG
(like MIT-BIH) database [4]. In table II we represent the
results obtained from different authors, and it is obvious that
authors who use own-recorded signal achieve a higher
performance.

TABLE I
Performances of the proposed method for detecting SR, VT and VF

arrhythmia’s for different window lengths.
*Sensitivity=TP/(TP+FN), where TP=true positive, FN=false

negative [5]

SENSITIVITY (%)Window
Length
(sec) SR VT VF

TOTAL
CORRECT

3 21/21=100 44/61=72.1 54/56=96.4119/138=86.2

4 21/21=100 46/61=75.4 53/56=94.6120/138=86.9

5 21/21=100 47/61=77 53/56=94.6121/138=87.7

6 21/21=100 47/61=77 53/56=94.6121/138=87.7

7 21/21=100 50/61=81.9 52/56=92.8123/138=89.1

8 21/21=100 50/61=81.9 53/56=94.6124/138=89.8

9 21/21=100 49/61=80.3 53/56=94.6123/138=89.1

10 21/21=100 48/61=78.7 51/56=91 120/138=86.9

We may speculate that the MIT-BIH database includes a
broad range of VT, consisting of both monomorphic and
polymorphic types, which has been known as a precursor to
lethal VF [4]. Therefore it is sometimes very difficult to
distinguish multifocal VT from VF and this can be one of
the reasons of the error obtained in our study.

Fig. 1 SPDR-CM Algorithm Flow graph
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Fig.2 SPDR-CM Algorithm front-end

One limitation of this current study, as in previous studies
[3][4][6], is that the algorithm performance was tested on
the same database used in the development of the method.
We need a larger database to test the performance of our
method and verify the validity of SPDR measure.

Both thresholds established in this study, CVT/VF and
mSPRD, could be modified in order to be adaptable to the
patient. The utility of this method falls in this very important
issue.

Finally, the most common approach to classify
arrhythmias is based in the detection of the QRS complex.
Recently new works have appeared suggesting another
approaches, where in spite of detecting the QRS complex,
the ECG signals are windowed with relatively large window
[4]. This works belong to this philosophy. Therefore it will
be interesting to compare the result of these both algorithms
using the same ECG database.

V. CONCLUSION

Based on experimental results using the MIT Data Base,

the Complexity Measure algorithm proposed by X-S Zhang
is not enough for the correct classification of SR, VT and
VF signals in the time domain. Intensive experimental
studies using SR signals have demonstrated that a new
feature named Sample Percentage in the Dynamic Range,
SPDR, is capable to separate SR signals from VT/VF
signals. The combination of both, Complexity Measure and
Sample Percentage in the Dynamic Range has given
interesting performances obtained an overall error rate SR
classification of 9%. The SPDR-CM algorithm has been
implemented in a computer providing the user with the
possibility to set-up the acquisition and processing
characteristics of ECG signal.
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TABLE II
COMPARATIVE RESULTS OF SENSITIVITY AMONG DIFFERENT METHODS

Paper/Method SR VT VF DATABASE

[3]/C 100 100 100
Own-recorded from body surface

34 SR, 85 VT monomor. and VF 85

[6]/Regression Test (RT) NA 100 100
Own-recorded from body surface

Not available quantity
RT, same [6] 81 90

[4]
SPRT

NA
93 96

MIT-BIH Malignant Arrhythmia Dat.
30 VT and 70 VF

CWA 100 50
[7]

ALPF
NA

91 75
Own-recorded and intracardiac

11 VT and 8 VF

[4]/ANN 99.3 59.1 91.2
Own-recorded and intracardiac.
9050 SR, 1249 VT and 2297 VF

C 23.8 81.9 94.6
Here

SPRD-C 100 81.9 94.6

MIT-BIH Malignant Arrhythmia Data.
MIT-BIH Normal Synus Rhythm

21 SR, 61 VT y 56 VF
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